miércoles, 18 de noviembre de 2009

jueves, 12 de noviembre de 2009

domingo, 8 de noviembre de 2009

ELECTRONICA ANALOGA





























De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda







Tipos de diodos de estado sólido


Diodo de alto vacío






Un diodo (del griego: dos caminos) es un dispositivo semiconductor que permite el paso de la corriente eléctrica en una única dirección con características similares a un interruptor. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones: por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con una resistencia eléctrica muy pequeña.
Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de suprimir la parte negativa de cualquier señal, como paso inicial para convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.
Los primeros diodos eran válvulas grandes en chips o tubos de vacío, también llamadas válvulas termoiónicas constituidas por dos electrodos rodeados de vacío en un tubo de cristal, con un aspecto similar al de las lámparas incandescentes. El invento fue realizado en 1904 por John Ambrose Fleming, de la empresa Marconi, basándose en observaciones realizadas por Thomas Alva Edison.- Al igual que las lámparas incandescentes, los tubos de vacío tienen un filamento (el cátodo) a través del que circula la corriente, calentándolo por efecto Joule. El filamento está tratado con óxido de bario, de modo que al calentarse emite electrones al vacío circundante; electrones que son conducidos electrostáticamente hacia una placa característica corvada por un muelle doble cargada positivamente (el ánodo), produciéndose así la conducción. Evidentemente, si el cátodo no se calienta, no podrá ceder electrones. Por esa razón los circuitos que utilizaban válvulas de vacío requerían un tiempo para que las válvulas se calentaran antes de poder funcionar y las válvulas se quemaban con mucha facilidad.
Contenido
[ocultar]
1 Tipos de válvula diodo
2 Diodo pn o Unión pn
3 Polarización directa
4 Polarización inversa
5 Curva característica del diodo
6 Modelos matemáticos
7 Otros tipos de diodos semiconductores
8 Aplicaciones del diodo
9 Enlaces externos
//
Tipos de válvula diodo [editar]
Diodo de alto vacío
Diodo de gas
Rectificador de mercurio
Diodo pn o Unión pn [editar]
Los diodos pn, son uniones de dos materiales semiconductores extrínsecos tipos p y n, por lo que también reciben la denominación de unión pn. Hay que destacar que ninguno de los dos cristales por separado tiene carga eléctrica, ya que en cada cristal, el número de electrones y protones es el mismo, de lo que podemos decir que los dos cristales, tanto el p como el n, son neutros. (Su carga neta es 0).
Formación de la zona de carga espacial
Al unir ambos cristales, se manifiesta una difusión de electrones del cristal n al p (Je).
Al establecerse estas corrientes aparecen cargas fijas en una zona a ambos lados de la unión, zona que recibe diferentes denominaciones como zona de carga espacial, de agotamiento, de deplexión, de vaciado, etc.
A medida que progresa el proceso de difusión, la zona de carga espacial va incrementando su anchura profundizando en los cristales a ambos lados de la unión. Sin embargo, la acumulación de iones positivos en la zona n y de iones negativos en la zona p, crea un campo eléctrico (E) que actuará sobre los electrones libres de la zona n con una determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y terminará deteniéndolos.
Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las zonas p y n. Esta diferencia de potencial (VD) es de 0,7 V en el caso del silicio y 0,3 V si los cristales son de germanio.
La anchura de la zona de carga espacial una vez alcanzado el equilibrio, suele ser del orden de 0,5 micras pero cuando uno de los cristales está mucho más dopado que el otro, la zona de carga espacial es mucho mayor.
Al dispositivo así obtenido se le denomina diodo, que en un caso como el descrito, tal que no se encuentra sometido a una diferencia de potencial externa, se dice que no está polarizado. Dado que los electrones fluyen desde la zona n hacia la zona p, al extremo p se le denomina ánodo (representándose por la letra A) mientras que al extremo n se le denomina cátodo (se representa por la letra C o K).
Existen también diodos de protección térmica los cuales son capaces de proteger cables.
A (p)

C ó K (n)
Representación simbólica del diodo pn
Cuando se somete al diodo a una diferencia de tensión externa, se dice que el diodo está polarizado, pudiendo ser la polarización directa o inversa.
Polarización directa [editar]

En este caso, la batería disminuye la barrera de potencial de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad.
Para que un diodo esté polarizado directamente, tenemos que conectar el polo positivo de la batería al ánodo del diodo y el polo negativo al cátodo. En estas condiciones podemos observar que:
El polo negativo de la batería repele los electrones libres del cristal n, con lo que estos electrones se dirigen hacia la unión p-n.
El polo positivo de la batería atrae a los electrones de valencia del cristal p, esto es equivalente a decir que empuja a los huecos hacia la unión p-n.
Cuando la diferencia de potencial entre los bornes de la batería es mayor que la diferencia de potencial en la zona de carga espacial, los electrones libres del cristal n, adquieren la energía suficiente para saltar a los huecos del cristal p, los cuales previamente se han desplazado hacia la unión p-n.
Una vez que un electrón libre de la zona n salta a la zona p atravesando la zona de carga espacial, cae en uno de los múltiples huecos de la zona p convirtiéndose en electrón de valencia. Una vez ocurrido esto el electrón es atraído por el polo positivo de la batería y se desplaza de átomo en átomo hasta llegar al final del cristal p, desde el cual se introduce en el hilo conductor y llega hasta la batería.
De este modo, con la batería cediendo electrones libres a la zona n y atrayendo electrones de valencia de la zona p, aparece a través del diodo una corriente eléctrica constante hasta el final.
Polarización inversa [editar]

En este caso, el polo negativo de la batería se conecta a la zona p y el polo positivo a la zona n, lo que hace aumentar la zona de carga espacial, y la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería, tal y como se explica a continuación:
El polo positivo de la batería atrae a los electrones libres de la zona n, los cuales salen del cristal n y se introducen en el conductor dentro del cual se desplazan hasta llegar a la batería. A medida que los electrones libres abandonan la zona n, los átomos pentavalentes que antes eran neutros, al verse desprendidos de su electrón en el orbital de conducción, adquieren estabilidad (8 electrones en la capa de valencia, ver semiconductor y átomo) y una carga eléctrica neta de +1, con lo que se convierten en iones positivos.
El polo negativo de la batería cede electrones libres a los átomos trivalentes de la zona p. Recordemos que estos átomos sólo tienen 3 electrones de valencia, con lo que una vez que han formado los enlaces covalentes con los átomos de silicio, tienen solamente 7 electrones de valencia, siendo el electrón que falta el denominado hueco. El caso es que cuando los electrones libres cedidos por la batería entran en la zona p, caen dentro de estos huecos con lo que los átomos trivalentes adquieren estabilidad (8 electrones en su orbital de valencia) y una carga eléctrica neta de -1, convirtiéndose así en iones negativos.
Este proceso se repite una y otra vez hasta que la zona de carga espacial adquiere el mismo potencial eléctrico que la batería.
En esta situación, el diodo no debería conducir la corriente; sin embargo, debido al efecto de la temperatura se formarán pares electrón-hueco (ver semiconductor) a ambos lados de la unión produciendo una pequeña corriente (del orden de 1 μA) denominada corriente inversa de saturación. Además, existe también una denominada corriente superficial de fugas la cual, como su propio nombre indica, conduce una pequeña corriente por la superficie del diodo; ya que en la superficie, los átomos de silicio no están rodeados de suficientes átomos para realizar los cuatro enlaces covalentes necesarios para obtener estabilidad. Esto hace que los átomos de la superficie del diodo, tanto de la zona n como de la p, tengan huecos en su orbital de valencia con lo que los electrones circulan sin dificultad a través de ellos. No obstante, al igual que la corriente inversa de saturación, la corriente superficial de fuga es despreciable.
Curva característica del diodo [editar]

Tensión umbral, de codo o de partida (Vγ ).La tensión umbral (también llamada barrera de potencial) de polarización directa coincide en valor con la tensión de la zona de carga espacial del diodo no polarizado. Al polarizar directamente el diodo, la barrera de potencial inicial se va reduciendo, incrementando la corriente ligeramente, alrededor del 1% de la nominal. Sin embargo, cuando la tensión externa supera la tensión umbral, la barrera de potencial desaparece, de forma que para pequeños incrementos de tensión se producen grandes variaciones de la intensidad de corriente.
Corriente máxima (Imax ).Es la intensidad de corriente máxima que puede conducir el diodo sin fundirse por el efecto Joule. Dado que es función de la cantidad de calor que puede disipar el diodo, depende sobre todo del diseño del mismo.
Corriente inversa de saturación (Is ).Es la pequeña corriente que se establece al polarizar inversamente el diodo por la
formación de pares electrón-hueco debido a la temperatura, admitiéndose que se duplica por cada incremento de 10º en la temperatura.
Corriente superficial de fugas.Es la pequeña corriente que circula por la superficie del diodo (ver polarización inversa), esta corriente es función de la tensión aplicada al diodo, con lo que al aumentar la tensión, aumenta la corriente superficial de fugas.
Tensión de ruptura (Vr ).Es la tensión inversa máxima que el diodo puede soportar antes de darse el efecto avalancha.
Teóricamente, al polarizar inversamente el diodo, este conducirá la corriente inversa de saturación; en la realidad, a partir de un determinado valor de la tensión, en el diodo normal o de unión abrupta la ruptura se debe al efecto avalancha; no obstante hay otro tipo de diodos, como los Zener, en los que la ruptura puede deberse a dos efectos:
Efecto avalancha (diodos poco dopados). En polarización inversa se generan pares electrón-hueco que provocan la corriente inversa de saturación; si la tensión inversa es elevada los electrones se aceleran incrementando su energía cinética de forma que al chocar con electrones de valencia pueden provocar su salto a la banda de conducción. Estos electrones liberados, a su vez, se aceleran por efecto de la tensión, chocando con más electrones de valencia y liberándolos a su vez. El resultado es una avalancha de electrones que provoca una corriente grande. Este fenómeno se produce para valores de la tensión superiores a 6 V.
Efecto Zener (diodos muy dopados). Cuanto más dopado está el material, menor es la anchura de la zona de carga. Puesto que el campo eléctrico E puede expresarse como cociente de la tensión V entre la distancia d; cuando el diodo esté muy dopado, y por tanto d sea pequeño, el campo eléctrico será grande, del orden de 3·105 V/cm. En estas condiciones, el propio campo puede ser capaz de arrancar electrones de valencia incrementándose la corriente. Este efecto se produce para tensiones de 4 V o menores.
Para tensiones inversas entre 4 y 6 V la ruptura de estos diodos especiales, como los Zener, se puede producir por ambos efectos.
Modelos matemáticos [editar]
El modelo matemático más empleado es el de Shockley (en honor a William Bradford Shockley) que permite aproximar el comportamiento del diodo en la mayoría de las aplicaciones. La ecuación que liga la intensidad de corriente y la diferencia de potencial es:
Donde:
I es la intensidad de la corriente que atraviesa el diodo
VD es la diferencia de tensión entre sus extremos.
IS es la corriente de saturación (aproximadamente 10 − 12A)
q es la carga del electrón cuyo valor es 1.6 * 10 − 19
T es la temperatura absoluta de la unión
k es la constante de Boltzmann
n es el coeficiente de emisión, dependiente del proceso de fabricación del diodo y que suele adoptar valores entre 1 (para el germanio) y del orden de 2 (para el silicio).
El término VT = kT/q = T/11600 es la tensión debida a la temperatura, del orden de 26 mV a temperatura ambiente (300 K ó 27 ºC).
Con objeto de evitar el uso de exponenciales (a pesar de ser uno de los modelos más sencillos), en ocasiones se emplean modelos más simples aún, que modelan las zonas de funcionamiento del diodo por tramos rectos; son los llamados modelos de continua o de Ram-señal que se muestran en la figura. El más simple de todos (4) es el diodo ideal.
Otros tipos de diodos semiconductores [editar]


Diodo doble 6CH2P (6X2Π) de fabricación rusa usado como rectificador de onda media

martes, 3 de noviembre de 2009

fuente lineal 5v,12v,-12v y variable de 12v

IMPRESO DE LA FUENTE LINEAL
PLANO DE FUENTE LINEAL

INTEGRADOS:



ANALISIS FUENTE LINEAL
PRACTICA 23216



















LM317:

PIN 1 ADJ: TIERRA
PIN 2 VOUT: SALIDA
PIN 3 VIN: ENTRADA





CARACTERISTICAS: TERMINAL POSITIVIO REGULADOR DE VOLTAJE CAPAZ DE SUMINISTRAR UN EXCESO DE 1.5ª SOBRE UN MINIMO DE 1.2V A UN MAXIMO DE RESISTENCIA DE 37V .

L7805-CV:









LM 7805



Es un regulador fijo de 5V. Tiene una capacidad máxima de 1 Ampere y soporta hasta 40VDC en la entrada. Tiene 3 patas: la de la izq. es la entrada, la del centro es negativo y la de la derecha es la salida (+5V). Es muy confiable y requiere de un disipador de calor si la tensión de entrada es muy alta con respecto a la salida, ó si la corriente se llega a aproximar al límite. Requiere que la entrada sea cuando menos de 7 u 8V para que regule a 5V.







L7812-CV








Es un regulador fijo de 12v.tiene una capacidad maxima de 1amp.es resiste un máximo de 37 voltios muy confiable y requiere de un disipador de calor . requiere que la entrada sea de 19v para que ,regule a 12v.

Pin 1 : v entrada
Pin 2 : tierra
Pin 3 : v salida



LM7912CV


Pin 1 : tierra
Pin 2 : v entrada
pin 3 : v salida


Este regulador puede proporcionar locales en la regulación de tarjetas, eliminando la distribución de los problemas asociados con la regulación solo punto; Además, teniendo la opción mismo voltaje la serie L7800 positivo estándar, son especialmente adecuado para fuentes de alimentación de división. En Además, la-5.2V también está disponible para ECL sistema. Si no se proporciona un disipador adecuado, que puede entregar más de 1,5 A de corriente de salida. Aunque se ha diseñado principalmente como voltaje fijo los reguladores, estos dispositivos pueden ser utilizados con componentes externos para obtener voltajes ajustables y las corrientes.



ENTRADA:

Es controlado por dos rectificadores y filtros de entrada en donde entra una tensión alterna convirtiéndola en una continua punzante, uno de los puentes diodos nos logra convertir la onda de alterna, en una continua, logrando en uno de ellos el voltaje de 12V variable, fijo y -12, en el otro puente diodo y luego del paso del regulador encontramos un voltaje de 5V fijos, luego encontramos los reguladores de voltaje donde su función es la limitación de corriente y la protección de sobrecargas. Para ello necesita un disipador de calor si la tensión de entrada es muy alta con respecto a la salida, ó si la corriente se llega a aproximar al límite.


SALIDA:

Obteniendo las funciones de cada una de las partes del circuito de la fuente logramos hacer las diferentes pruebas de verificación, donde comprobamos que el sistema esta en buen funcionamiento, allí logramos encontrar los voltajes variables y fijos que existen en nuestra fuente, las cuales son: 12V, -12V, y 5V fijos.





ANALISIS DE LA FUENTE CON CARGA


FUENTE DE 12 VOLTIOS FIJOS: CUANDO PONEMOS EL
AMPERAJE MINIMO Q ES DE 230 m. EL VOLTAJE SE CAE
11.5 VOLTIOS Y AL SUBIR EL AMPERAJE AL MAXIMO QUE
ES DE 650 m. EL VOLTAJE SE CAE A 8.65VOLTIOS.


FUENTE DE 5 VOLTIOS FIJOS: CUANDO PONEMOS EL
AMPERAJE MINIMO QUE ES DE 0.13 m. EL VOLTAJE SE
MANTIENE EN 5 VOLTIOS Y AL SUBIR EL AMPERAJE
AL MAXIMO QUE ES DE 0.30 m. EL VOLTAJE CAE A 4.52
VOLTIOS.


FUENTE DE -12 FIJOS: CUANDO PONEMOS EL
AMPERAJE MINIMO QUE ES DE 240 m. EL VOLTAJE SE
CAE -11.33 Y AL SUBIR EL AMPERAJE
AL MAXIMO QUE ES DE -570m. VOLTAJE CAE A-8.44
VOLTIOS.


FUENTE VARIABLE DE 1.3 A 12 VOLTIOS: CUANDO LE
PONEMOS EL AMPERAJE MINIMO QUE ES DE .03m. EL
VOLTAJE ES DE 1.37 VOLTIOS Y AL SUBIR EL AMPERAJE
AL MAXIMO QUE ESDE 630m. EL VOLTAJE SE CAE 8.90
VOLTIOS.











fuente conmutada de 24V.


ANALISIS CIRCUITO FUENTE CONMUTADA DE 24V





















SEGUNDO BLOQUE “TRANSFORMAD OR”:

Se encarga de convertir una corriente continua CC en una onda cuadrada de mediana frecuencia de 60Hz la cual es aplicada a una bobina o al primario de un transformador, y sale a un rectificador y filtro de salida la cual ha sido rectificado, entregando así una continua pura, el cual es recibida por el MOSFET (2sk727).

OPTOCOPLADOR : CNX82A


Envía señales de luz y retroalimenta el circuito
Se encarga de mantener un valor constante de alta tension de salida.












Integrado CS3843A (pwm):


Se encarga de recibir las señales de frecuencia del optocoplador(60Hz), luego envia los pulsos del MOSFET, y a su vez, el MOSFET decremento el voltaje de salida (protección).


MOSFET “2SK727” CHANEL N:
Trabaja con un voltaje para que funcione el suicheo.

ENTRADA:
Es controlado por un rectificador y filtro de entrada en donde entra una tensión alterna convirtiéndola en una continua punzante.
Luego pasa por cuatro resistencias en serie, el efecto que logra es reducir el voltaje para alimentar el integrado CS3843A, este integrado genera pulsos al transformador.

SALIDA:

Obteniendo las funciones de cada una de las partes del circuito de la fuente logramos hacer las diferentes pruebas de verificación, donde comprobamos que el sistema queda en buen funcionamiento, debido al mantenimiento correctivo que se le hizo, allí logramos encontrar los voltajes fijos que existen en nuestra fuente, su voltaje es de 24V.



PLANO DE FUENTE CONMUTADA







LISTA DE MATERIALES FUENTE CONMUTADA

RESISTORES CONDENSADORES DIODOS
R1:470K Ω C1:0.47mf D2:0.490V
R6:150K Ω C2:91.7nf D3:0.490V
R7:150K Ω C3:4700pf cerámico Dz2:0.649V
R8:68K Ω C4: 4700pf cerámico Dz6:0.685V
R9:47K Ω C5:220mf DIODO VARISTOR
R10:47K Ω C6:220mf Db: 20v 116ª c.c
R11:47K Ω C7:0.01mf PUENTE DIODO
R12:47K Ω C9:100mf KBL 086
R13:22 Ω C10:6.81nf INTEGRADO:
R14:5.1K Ω C11:33nf PWM: CS3843A
R16:0.39 Ω C12:33nf BOBINA TOROIDAL R41:1K Ω C32:2200pf
R17:1.2K Ω C13:15nf FUSIBLE:3ª/250V
R18:15K Ω C14:15nf Q3: T-NPN
R19:680 Ω C15:21K Q2: T-PNP
R20:82K Ω C16:22mf Q1: MOSFET
R21:1K Ω C21:1nf L3:B.TOROIDAL DE CHOKE
R22:5.1K Ω C23:1nf
R23:5.1K Ω C24:470mf
R24:22K Ω C25:470mf
R26:22K Ω C26:470mf
R27:1K Ω C27:470mf
R31:270 Ω C28:0.01mf
R33:270 Ω C29:0.01mf
R34:680 Ω C30:0.22K
R36:100 Ω C31:0.01mf
R37:330 Ω
R39:22K Ω
R40:2K Ω